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The Galileo low-gain antenna mission will be supported by a coding system that
uses a (14,1/4) inner convolutional code concatenated with Reed-Solomon codes

of four different redundancies. Decoding for this code is designed to proceed in

four distinct stages of Viterbi decoding followed by Reed-Solomon decoding. In

each successive stage, the Reed-Solomon decoder only tries to decode the highest
redundancy codewords not yet decoded in previous stages, and the Viterbi decoder

redecodes its data utilizing the known symbols from previously decoded Reed-
Solomon codewords.

A previous article [i] analyzed a two-stage decoding option that was not selected

by Galileo. The present article analyzes the four-stage decoding scheme and derives

the near-optimum set of redundancies selected for use by Galileo. The performance
improvements relative to one- and two-stage decoding systems are evaluated.

I. Introduction

This article is a follow-on to [1], which analyzed two enhanced decoding options planned for the Galileo
low-gain antenna (LGA) mission: Reed-Solomon redecoding using erasure declarations and Viterbi re-

decoding using Reed-Solomon corrected symbols. The analysis in [1] produced tables of gains achievable

from enhanced decoding under an assumption of infinite interleaving for one, two, or four stages of Viterbi
decoding, but no Reed-Solomon redecoding, and for one or two stages of Viterbi decoding, with or with-

out Reed-Solomon redecoding, under the actual Galileo conditions of depth-8 interleaving. The present

article looks at the case of four stages of Viterbi decoding and depth-8 interleaving. The four-stage coding
system has been selected for implementation to support the Galileo LGA mission.

II. Block Diagram of Coding Options

A block diagram of the various coding options is shown in Fig. 1. A Reed-Solomon encoded data

block is interleaved to depth 8 and then encoded by the (14,1/4) convolutional encoder. The Reed-

Solomon codewords can have four different levels of redundancies, as depicted by the lightly shaded

areas at the bottom of the code block in Fig. 1. The encoded data are modulated, passed over an ad-
ditive white Gaussian noise (AWGN) channel, demodulated, and presented to a Viterbi decoder. After
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Fig. 1. Coding options.

deinterleaving, the codeword or set of codewords with the highest redundancy is decoded by the Reed-

Solomon decoder. The symbols in the codeword(s) decoded by the Reed-Solomon decoder are fed back

to assist the Viterbi decoder in redecoding the symbols in weaker codewords. The output of the Viterbi

redecoder is deinterleaved, and the set of codewords with the next highest redundancy is then decoded

by the Reed-Solomon decoder. The newly decoded symbols are fed back to further assist the Viterbi

redecoder, and the process is repeated for two more decoding stages until the codewords in all four

redundancy classes are successfully decoded.

Figure 1 also shows an option for a shorter feedback loop entirely within the Reed-Solomon decoder

using erasure declarations. As shown in [1], Reed Solomon redecoding using erasure declarations based

on error forecasting was worth around 0.19 dB when used in conjunction with one-stage decoding of

the Galileo LGA convolutional code. However, the extra gain from using erasure declarations shrinks

to a minuscule 0.02 dB when combined with two-stage Viterbi decoding. For four-stage decoding, the

marginal improvements gained from erasure declarations are almost nil. Therefore, in the present article,

Reed-Solomon redecoding using erasure declarations has not been considered in analyzing four-stage

decoding performance. However, the Galileo LGA coding system will still incorporate the capability to

perform this type of redecoding, as it may prove helpful in overcoming decoding difficulties not caused

by AWGN, such as closing data gaps caused by unsynchronized symbols.

III. The Simulation Data

Figures 2 through 5 are improved and expanded versions of Figs. 1 through 4 of [1], obtained by

accumulating many more millions and billions of simulated decoded bits during the interim. Figure 2

shows the bit error rate (BER) and symbol error rate (SER) (for S-bit Reed-Solomon symbols) for con-

volutionally encoded symbols decoded by either the Big Viterbi Decoder (BVD) or a software (S/W)

Viterbi decoder. The software decoding algorithm is a close approximation to the software decoder that

is actually being designed to support the Galileo LGA mission. Figure 3 shows the decoded symbol error
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Reed-Solomon decoding with infinite interleaving.
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Fig. 5. SER after decoding inner convolutlonal code with BVD followed by
Reed-Solomon decoding with depth-8 interleaving,
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rate for a Reed-Solomon decoder receiving convolutionally decoded bits from the BVD; the x-axis of

Fig. 3 is the convolutional code signal-to-noise ratio (SNR) Eb/No. Figure 4 shows the decoder symbol

error rate for the software Viterbi decoder presented with known symbols repeating once every eight, four,

or two symbols; as discussed in [1], these SERs depend on the phase of the decoded symbols relative to

the locations of the known symbols. The baseline SER curves from Fig. 2 for no known symbols are also

included in this figure for reference. Figure 5 repeats the infinite interleaving performance curves from

Fig. 3 and overlays curves representing Reed-Solomon decoded SER when the codewords are interleaved to

depth 8. As in Fig. 3, the Reed-Solomon decoder for Fig. 5 receives its symbols from the output of the

BVD, and the x-axis measures the signal-to-noise ratio at the output of the BVD, not the overall signal-

to-noise ratio at the output of the concatenated Reed-Solomon and convolutional codes. SER estimates

in Figs. 2 through 5 were taken at spacings of 0.05 or 0.10 dB, and each estimate was based on about

2 Gbits of decoded data from the BVD or 25 to 100 Mbits of data from the software decoder.

As is evident from Figs. 2 and 4, the software decoder performs a few hundredths of a dB better

than the BVD (due to a longer truncation length and other factors). The analysis of four-stage decoding

requires the use of both Figs. 4 and 5; proper calibration is important between the software-decoder-

based curves in Fig. 4 and BVD-based curves in Figure 5. In [1], no distinction was made between the

performance of the two decoders, because the software decoder at that time resembled the BVD more

closely than the ultimate Galileo LGA decoder. From Fig. 4 is deduced a table of SER-equivalent Eb/No

operating points for the BVD operating with no known symbols. Whenever the software decoder is

decoding data at a value of Eb/No in the leftmost column of Table 1, the BVD achieves the same average

SER at the "equivalent" Eb/No in the columns to the right. There is one BVD-equivalent Eb/No column

for each of the software-decoder-based curves in Fig. 4. For the case of no known symbols, this really

is a near equivalence, and the decoded bit errors from the software decoder and the BVD have very

similar burst statistics, not just average SER. For the various cases of known symbols presented to the

software decoder, this equivalence is only in terms of average SER. As noted in [1], the error bursts from

a decoder presented with known symbols are more benign than those for a decoder operating at the same

average SER without any known symbols, as measured by their effects on Reed-Solomon decoding with

finite interleaving. Thus, use of the BVD-equivalent signal-to-noise ratios in Table 1 will give slightly

conservative predictions of performance in decoding stages 2 through 4.

Table 1. BVD-equivalent signal-to-noise ratios Eb/No, dB.

Known symbol phase/spacing input to software decoder
Software
decoder

Eb/No, dB
None 4/8 3/8 2/8 1/8 2/4 1/4 1/2

-0.15 -- 0.16 0.18 0.24 0.39 0.54 0.62 1.20

-0.10 -0.06 0.20 0.22 0.28 0.43 0.57 0.65 1.22

-0.05 -0.01 0.23 0.25 0.32 0.46 0.61 0.69 1.25

0.00 0.04 0.27 0.29 0.36 0,50 0.64 0.72 1.28

0.05 0.09 0.31 0.33 0.39 0.54 0.67 0.75 1.30

0.10 0.14 0.35 0.37 0.43 0.58 0.70 0.78 1.33

0.15 0.18 0.38 0.41 0.47 0.61 0.74 0.82 1.36

0.20 0.23 0.43 0.45 0.51 0.66 0.77 0.85 1.39

0.30 0.33 0.51 0.53 0.59 0.74 0.84 0.92 1.44

0.40 0.43 0.59 0.61 0.67 0.82 0.91 0.99 --

0.50 0.53 0.67 0.69 0.75 0.90 0.98 1.06 --

0.60 0.62 0.75 0.77 0.82 0.97 1.04 1.13 --
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IV. The Basic Analysis Procedure

As noted in [1], even 2 Gbits of BVD-decoded data are insufficient to directly verify Reed-Solomon

decoded SERs around 10 -7 for the case of depth-8 interleaving. Instead, such performance must be

inferred by extrapolating the simulated depth-8 curves along the accurately known family of curves for

infinite interleaving. Each curve for depth-8 interleaving becomes nearly parallel to a member of the

family of infinite interleaving curves, and 10 -7 performance for depth-8 interleaving may be inferred by
extrapolating along an "equivalent" infinite interleaving curve.

The selection and analysis of an appropriate set of codeword redundancies for four-stage decoding is

illustrated in the following example. First, select a desired Eb/No operating point for the inner convo-

lutional code using the software decoder. This choice is somewhat arbitrary, because the same analysis

must be repeated for several values of Eb/No in order to determine the optimum operating point. For

this example, a convolutional code signal-to-noise ratio Eb/No of 0.00 dB will be used. From Table 1, the

average SER from the first stage of Viterbi decoding by the software decoder is the same as the average

SER produced by the BVD at the BVD-equivalent operating point of 0.04 dB. The output SER from the

first Reed-Solomon decoder stage is obtained from the BVD's performance curve in Fig. 5. If the target

SER is around 2 × 10 -7 (target BER around 1 × 10-7), the highest redundancy codewords must yield an

output SER on the order of 10 -T without any help from succeeding decoding stages. From Fig. 5, this

can be accomplished at a BVD-equivalent signal-to-noise ratio Eb/No of 0.04 dB by using a codeword

with correction capability E of approximately 47. From Table 1, the average SER from the second stage

of Viterbi decoding with one known symbol every eight is the same as the average SER produced by the
BVD with no known symbols at the BVD-equivalent operating points of 0.50, 0.36, 0.29, and 0.27 dB,

for codewords with symbols at phases ±1, +2, ±3, and E4, respectively, from the known symbol. From

Fig. 5, codewords with E _ 20, 26, 29, and 30, respectively, can achieve SERs just under 10 -7 for these

four phases. Looking ahead to the next stage of Viterbi decoding, it can be shown that the biggest payoff

comes from locating the second highest redundancy codeword at phase E4. Then the third stage of
Viterbi decoding is accomplished with one known symbol every four, and the BVD-equivalent operating

points from Table 1 are 0.72 and 0.64 dB for phases E1 and =t=2, respectively. These require codewords

with E _ 13 and 15, respectively, and again it can be shown that the out-of-phase location E2 makes the

best utilization of the fourth and final Viterbi decoding stage. With two of these third highest redundancy

codewords per block of eight placed at phases E2, the final Viterbi decoding operation is accomplished

with one known symbol every two, and from Table 1, the BVD-equivalent operating point for the unknown

symbols at phase E1 is 1.28 dB, requiring four lowest-redundancy codewords with E _ 5. This selection

process yields a redundancy profile 2E _ (94, 10, 30, 10, 60, 10, 30, 10); this incurs a redundancy overhead

cost of 0.58 dB, and the resulting concatenated code signal-to-noise ratio Eb/No is 0.58 dB. The overall

average SER achieved by four-stage decoding using this redundancy set can be computed approximately

by the formula given in [1], SER = SERa(1) + 7/8 SERb(2) + 3/4 SERe(3) + 1/2 SERd(4), where
the indices a, b, c, and d refer to the strongest, next strongest, third strongest, and weakest codewords and

(n) refers to decoding during stage n, n = 1, 2, 3, 4. Extrapolations from Fig. 5 for SERa(1), SERb(2),
SERe(3), and SERd(4) yield an overall SER of approximately 2 x 10 -7.

Similar analyses starting with convolutional code operating points different from 0.00 dB yield differ-

ent sets of optimal redundancies and different concatenated code Eb/No. It can be shown empirically

that the optimum convolutional code operating point for four-stage decoding occurs within a range from

approximately -0.10 to +0.05 dB, and that essentially identical performance (within one or two hun-

dredths of a dB) is achievable by suitably selecting different redundancy sets within this range. Also, the

best pattern of codeword redundancies always appears to be (a,d, c, d, b,d,c, d), where a is the highest

redundancy, b the next highest, c the third highest, and d the lowest. This is the same pattern suggested
by an earlier analysis of four-stage decoding in [2].
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V. A More Refined Analysis Procedure

The analysis above may be refined by further studying the relationship between the performance curves

for depth-8 interleaving and the "equivalent" infinite interleaving curves along which depth-8 SERs on

the order of 10 -7 are extrapolated. Table 2 and Fig. 6 attempt to quantify this equivalence.

Table 2. Equivalent error correction needed for infinite interleaving to yield the same SER.

Error correction for depth-8 interleaving
BVD

Eb/No,

dB E=4 E=5 E=6 E=IO E=14 E=16 E=18 E=30 E=32 E=34 E=44 E=48 E=50

-0.10 ....... 29.16 30.82 32.46 40.60 43.77 45.18

-0.05 ....... 28.70 30.34 31.98 40.07 43.44 --

0.00 ....... 28.26 29.89 31.50 39.90 -- --

0,05 ....... 27.86 29.45 31.08 -- -- --

-- 27.51 29.10 ....0.10 ......

-- -- -- 13,78 15.52 17.24 27,25 29.15 ....0.15 --

-- -- 13.57 15.30 17.02 ......0.20 -- --

0.30 -- -- -- 9,73 13.23 14,94 16.63 ......

0.40 -- -- -- 9.52 12.99 14.74 16.34 ......

0.50 3.96 4.89 5,80 9.36 12.86 14.49 .......

0.60 3.88 4.82 5.72 9.31 .........

0.70 3,82 4.73 5.64 9.17 .........

0.80 3.81 4.73 5.63 .........

0.90 3.81 4.70 5.64 ..........

1.00 3.84 4.67 5.59 ........

1.10 3.79 4.76 ........

Table 2 shows, for each Reed-Solomon code tested at depth-8 interleaving, the equivalent error correc-

tion capability needed to achieve the same SER if the interleaving were ideal. At each value of Eb/No, the

equivalent error correction is obtained by linear interpolation on the log scale between the two adjacent

infinite interleaving curves. It is quoted as a real number, not an integer, and thus does not represent a

realizable code. For example, from Fig. 5 at 0.5 dB, the E = 16 curve for depth-8 achieves an SER about

halfway between the infinite interleaving curves for E = 14 and E = 15. The corresponding equivalent

error correction capability is listed in Table 2 as E = 14.49.

Figure 6 plots a normalized version of the numbers in Table 2. Each point in Table 2 is plotted with an

x-coordinate equal to the depth-8 SER at the given value of Eb/No and a y-coordinate equal to the ratio

of the actual depth-8 error correction capability to the equivalent infinite interleaving error-correction

capability listed in Table 2. This ratio is referred to as the depth-8 error magnification factor. For

purposes of computing Reed-Solomon code performance, the (nonindependent) symbol errors occurring

in depth-8 interleaved codewords are effectively multiplied by the error magnification factor, as compared

to an equal average number of independent symbol errors. The error magnification factor is a way of

measuring the propensity for one long Viterbi decoder error burst to contribute more than one symbol

error to a given Reed-Solomon codeword whenever the codewords are only finitely interleaved.

A more mechanized approach than visually extrapolating the depth-8 performance curves in Fig. 5 uti-

lizes the error magnification factors presented in Fig. 6. The first step is to solve for the redundancies that
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would be needed if the interleaving were ideal. For this solution, fractional redundancies and fractional

error correction capabilities are permissible, and these can be obtained very accurately by interpolation

between successive ideal interleaving curves. At each convolutional code operating point, the goal is to

solve for a roughly "balanced" set of four redundancies, a, b, c, d, used in the pattern (a, d, c, d, b, d, c, d).
A balanced set of redundancies is one for which each class of codewords contributes roughly equally to

the overall SER. If the redundancies were not roughly balanced, essentially the same performance could

be achieved at lower cost by reducing the redundancy of a codeword class that contributes only a tiny
portion of the overall SER.

After a balanced set of fractional redundancies for ideal interleaving is obtained, the next step is

to scale these upward by the error magnification factors for depth-8 interleaving and then round these

numbers to the nearest or next higher even-integer 2E. The integer roundoff causes some loss of balance

and could cause worse performance if all the roundoffs were downward, hence the rationale for generally

rounding upward. Finally, the slightly unbalanced performance of the rounded set of redundancies can be

computed for depth-8 interleaving by again applying the magnification factors to obtain the equivalent

ideal interleaving fractional redundancies and then interpolating between ideal interleaving curves at

adjacent even-integer redundancies.

Figure 6 shows that for testable SERs between 10 -2 and 10 -5, the depth-8 error magnification factor

stays within a small range less than 1.11. The error magnification factor increases with decreasing SER

but at a decreasing rate. In all cases plotted, it appears to be leveling off by the time it reaches an SER of
i0-5; it is not unreasonable to presume that this leveling off will continue through the untestable values

of SER around 10 -r. The error magnification factors also increase with increasing codeword redundancy

2E, but appear to increase very slowly for E above 10. Nominal depth-8 error magnification factors for
the target SER around 10 -r have been inferred by extrapolating the family of curves in Fig. 6. The
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values used for this analysis are 1.13 for E = 48 4- 6, 1.125 for E = 32 4- 4, 1.12 for E -- 16 4- 2, 1.105 for

E = 10 + 1, and 1.09 for E = 5 4- 1.

Table 3 shows the results of this refined analysis procedure for four-stage decoding. At various can-

didate design point values of Eb/No for the software Viterbi decoder, a balanced set of fractional re-

dundancies is obtained to yield an overall SER of 2 x 10 -7 with ideal interleaving. The nominal error

magnification factors for depth-8 interleaving are applied to the redundancies for ideal interleaving, and

the resulting depth-8 redundancies are rounded to even integers. The corresponding SER is computed

from the curves for infinite interleaving, again using the nominal error magnification factors. The overall

signal-to-noise ratio for the concatenated code is then computed by adding the overhead imposed by the

selected redundancies.

Table 3. Design values of redundancies for various possible operating points of the S/W Viterbi
decoder, with redundancies a, b, c, d repeated according to pattern (a, d, c, d, b, d, c, d).

Design

S/W
decoder

operating
point*

Resulting Balanced redundancies Assumed error Design redundancies

concatenated for ideal magnification factors for for depth-8 Resulting

code interleaving depth-8 interleaving interleaving SER

Eb/No,
dB a b c d Ma Mb Mc Md a b c d

-0.10 0.58 98.52 61.53 30.67 9.79 1.13 1.125 1.12 1.09 110 70 34 12 1.9 x 10 -7

-0.05 0.58 90.74 57.71 28.91 9.33 1.13 1.125 1.12 1.09 104 66 32 10 1.8 × 10 -7

0.00 0.58 83.14 53.96 27.02 8.88 1.13 1.125 1.12 1.09 94 60 30 10 2.1 × 10 -7

0.05 0.59 76.27 49.89 25.89 8.57 1.13 1.125 1.12 1.09 86 56 28 10 2.3 × 10 -T

"Convolutional code Eb/No, dB.

Note that essentially identical concatenated code design points just under 0.60 dB are obtained over

a range of convolutional code design points from -0.10 to +0.05 dB, each using a custom-designed set of

optimum redundancies. The set of redundancies listed in Table 3 for a convolutional code design point

of 0.00 dB is the same as those discussed in the earlier example. There are many sets of "optimum"

redundancies that achieve essentially the same performance. Table 4 lists 24 different redundancy sets

that all produce an average SER of 2 × 10 -7 at a concatenated code signal-to-noise ratio of 0.58 dB.

As in [1], the recommendation in this article is to select the optimum redundancy set with the least

spread in redundancies and the highest convolutional code operating point. This set is the one listed in

Table 3 for a convolutional code design point of 0.00 dB, with redundancy pattern (a, d, c, d, b, d, c, d) =

(94, 10, 30, 10, 60, 10, 30, 10).

The foregoing procedure for selecting a set of redundancies has the advantage of allowing a major part

of the analysis to take place without any assumptions about how to extrapolate the depth-8 SER perfor-

mance data to the 10 -7 range. This makes it possible to isolate and somewhat quantify the inaccuracies

that might result from extrapolation. One might design a conservative set of redundancies for depth-8

interleaving by applying an extra-conservative set of magnification factors. This would require an easily

calculable increase in the concatenated code signal-to-noise ratio. At concatenated code operating points

just under 0.60 dB, an increase of all magnification factors by 0.05 above the nominal magnification

factors costs just 0.03 dB in added overhead; an underestimate this large seems unlikely, as it would put

three of the magnification factors above the top edge of the graph in Fig. 6. Designing for the adverse

magnification factors would correspond to using a, b, c, d = 98, 64, 32, 10, instead of the nominal design,

a, b, c, d = 94, 60, 30, 10, listed in Table 3 for a convolutional code design point of 0.00 dB. Conversely,

once a set of depth-8 redundancies has been selected, the sensitivity of the predicted SER to the extrapo-

lation assumptions could be tested by varying the assumed magnification factors for the final performance
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Table 4. Various optimal redundancy sets a r b r c, d, repeated according to

the pattern (at d_ c_ dr br dr cr d), that achieve SER _- 2 X 10 -7 at a con-
catenated code signal-to-noise ratio of 0.58 dB.*

Codeword redundancies Signal-to-noise ratios, dB

a b e d Concatenated Convolutional

SER

94 60 30 10 0.58 0.00 2.0 x 10 -7

94 62 30 10 0.58 -0.00 2.0 x 10 -7

96 60 30 10 0.58 -0.00 2.0 × 10 -7

96 62 30 10 0.58 -0.00 2.0 x 10 -7

102 64 32 10 0.58 -0.03 2.0 × 10 -7

102 64 34 10 0.58 -0.04 2.0 x 10 -7

102 66 32 10 0.58 -0.04 2.0 X 10 -7

102 66 34 10 0.58 -0.05 2.0 × 10 -7

102 68 32 10 0.58 -0.05 2.0 x 10 -7

102 68 34 10 0.58 -0.05 2.0 × 10 -7

102 70 32 10 0.58 -0.05 2.0 × 10 -7

104 64 32 10 0.58 -0.04 2.0 x 10 -7

104 64 34 10 0.58 -0.05 2.0 × 10 -7

104 66 32 10 0.58 -0.05 2.0 x 10 -7

104 66 34 10 0.58 -0.05 2.0 x 10 -7

104 68 32 10 0.58 -0.05 2.0 × 10 -7

104 70 32 10 0.58 -0.05 2.0 x 10 -7

106 64 32 10 0.58 -0.04 2.0 × 10 -7

106 64 34 10 0.58 -0.05 2.0 x 10 -7

106 66 32 10 0.58 -0.05 2.0 × 10 -7

106 66 34 10 0.58 -0.06 2.0 × 10 -7

106 68 32 10 0.58 -0.05 2.0 x 10 -7

108 64 32 10 0.58 -0.05 2.0 × 10 -7

108 66 32 10 0.58 -0.05 2.0 x 10 -7

*The first listed redundancy set was chosen to support the Galileo LGA
mission.

evaluation over a range of reasonable values. For example, it can be shown that the required operating

point of the code nominally designed for 0.00 dB would increase to 0.04 dB if all the error magnification

factors were increased by 0.05 above the nominal factors. Thus, the design mismatch only costs an

additional 0.01 dB above the 0.03 dB that would accrue if the adverse magnification factors could be

anticipated. Because of this relative insensitivity of the code's performance to the exact design parameters,

the nominal design was recommended and is being implemented for the Galileo LGA mission.

VI. Four-Stage Redecoding Dynamics: An Example

Figure 7 depicts an example of how the four-stage redecoding process works. The block of eight Reed-

Solomon codewords, with error correction capabilities (47, 5, 15, 5, 30, 5, 15, 5), is shown in five snap-

shots. The first snapshot depicts the bursts of errors emanating from the first-stage of Viterbi decoding

before any Reed-Solomon decoding. The 8-bit symbol errors output from the Viterbi decoder are repre-

sented by the black left-to-right traces. Correctly decoded symbols occupy the gray regions of the code
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Fig. 7. lllustration of four-stage redecoding dynamics for a sample code block.

block. Shown at the top of the block are the symbol error counts in the individual codewords. These range

from 36 to 47, making all the codewords undecodable except for the one with the highest redundancy.

The second snapshot shows the code block after the first codeword is corrected by the first-stage of Reed-

Solomon decoding. The corrected codeword, depicted in white, now has zero errors and is fed back to

assist the second stage of Viterbi decoding. The output of the Viterbi redecoder is improved by the known
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symbols from the one known codeword, and the resulting error bursts are thinned out and shortened,
as shown in the second snapshot. Now the codeword with correction capability 30 is barely decodable

despite 28 errors, so this codeword has zero errors in the third snapshot. With only three unknown

symbols between pairs of known symbols, the output from the third-stage Viterbi redecoder is improved

to the point where both codewords with correction capability 15 can be decoded by the Reed-Solomon
decoder. Finally, in the fourth snapshot, with four known symbols out of every eight, the fourth-stage

Viterbi redecoder output sports only occasional isolated symbol errors, which are easily corrected by the

final stage of Reed Solomon decoding despite the low correction capability of the fourth-stage codewords.

This example was obtained from simulated data that were intentionally run at several tenths of a dB

below the threshold Eb/No required to achieve a BER of 10 -v, because, at the design threshold, the

Viterbi (re)decoder error bursts would have been sparse enough to make the illustration unenlightening.
The choice of a below-threshold operating point also demonstrates another facet of the four-stage decoding

process. As seen in the first two snapshots, at this low Eb/No, the first two codewords are very lucky

to be decodable; in fact, some neighboring codewords have error counts equaling or exceeding the error

correction capabilities of the first- and second-stage codewords. This emphasizes that the performance

of the high-redundancy codes breaks down very rapidly as Eb/No is reduced below the design threshold,
whereas the lower redundancy codes used in the third and fourth stages are relatively unaffected by a

few tenths of a dB reduction.

VII. A Caveat: Undetected Errors

Throughout this analysis and that of [1], it has been assumed that Reed-Solomon codewords are

always either correctable or undecodable. The possibility of undetected Reed-Solomon errors has not been
considered. This has traditionally been a safe assumption for codes with large correction capabilities E,

because from [3] the undetected error rate is bounded by (l/E!) times the detected error rate. However,
for the fourth-stage codewords with E = 5, the undetected error rate can be up to 10 -2 times the detected

error rate, and so the possibility of undetected errors cannot be ignored.

Undetected errors in the four weakest codewords do pose a real threat if any attempt is made to

decode these words before the reliability of the Viterbi redecoder output is strengthened by having every

other symbol known, as shown in the next-to-last snapshot in Fig. 7. Conversely, however, if the weakest
codewords are always decoded subsequent to the final stage of Viterbi redecoding based on known symbols

from all of the four stronger codewords, both detected and undetected errors are so rare that they do

not breach the overall BER requirement of 10 -7. If Eb/No is reduced to the point where this assumption

is no longer valid, the stronger codewords become undecodable first, and the fourth stage of decoding is

never reached.

The following caveat suggests a very safe, conservative decoding algorithm that always utilizes exactly

four stages as described in this article: "Decode no word before its time." Such a decoder takes four

times as long to decode as a corresponding one-stage decoder. However, this extreme conservatism

is unnecessary because the four codewords with correctabilities 47, 15, 30, and 15 do in fact detect
their errors almost always. Therefore, it is safe to allow these codewords to be decoded as early as

possible, regardless of whether the corresponding Viterbi (re)decoder output has been cleaned up by
the successful decoding of stronger codewords in previous stages. The important caveat is that the four
weakest codewords should never be decoded until the Viterbi redecoder utilizes information from all four

of the stronger codewords. As long as this restriction is honored, there will be essentially no change in

the overall output BER. Yet the modified algorithm can allow for a probabilistic speedup in decoding

time, sometimes requiring four stages, three stages, or two stages, but never one stage.

VIII. Summary of Performance Results

Table 5 summarizes the performance results discussed above for four-stage decoding and compares

them to previous results for one- and two-stage decoding. For a fair comparison, the one- and two-stage
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SERs are recalculated here using the new software decoder calibration curves and the same assumed error

magnification factors for depth-8 interleaving. The required signal-to-noise ratios for one- and two-stage

decoding are lower than the values quoted in [1] by 0.03 and 0.01 dB, respectively.

Table 5. Performance comparisons for depth-8 interleaving at SER = 2 × 10 -7,

assuming no Reed-Solomon redecoding usingerasure declarations.

Decoding stages 1 2 4

Codeword redundancies

Convolutiona[ code Eb/No

Concatenated code Eb/No

(32,32,32,32,32,32,32,32) (66,20,22,20,66,20,22,20) (94,10,30,10,60,10,30,10)

0.56 dB 0.19 dB 0.00 dB

1.14 d13 0.77 dB 0.58 dB

The results in Table 5 do not include any effects from utilizing Reed-Solomon erasure declarations.

As noted earlier, the performance improvement at an SER of 2 × 10 -7 for a Reed-Solomon decoder

that makes use of erasure declarations is roughly 0.19 dB for one-stage decoding, 0.02 dB for two-stage
decoding, and 0.00 dB for four-stage decoding.

Two-stage decoding without erasure declarations is worth 0.37 dB relative to a baseline of one-stage
decoding without erasure declarations. Adding erasure declarations gains another 0.02 dB for a total

improvement of 0.39 dB. Four-stage decoding, with or without erasure declarations, gains 0.56 dB relative

to the baseline and 0.17 or 0.19 dB relative to two-stage decoding with or without erasure declarations,
respectively.

Uncertainties in the performance estimates stem mostly from the lack of enough data to directly
verify decoded SERs around 10 -7 with depth-8 interleaving. To first order, errors of this type are likely

to affect performance predictions for one-, two-, and four-stage decoding in the same direction; hence,

comparisons are not likely to change much. In absolute terms, the adverse uncertainty in four-stage

decoding performance is likely to be less than 0.04 dB. The favorable uncertainty due to this effect is

slightly smaller, as are the adverse uncertainties for one- and two-stage decoding. As mentioned earlier

and in [1], there is an additional favorable uncertainty of a few hundredths of a dB for the multiple-stage

decoding cases only, due to the technique of substituting "equivalent" BVD data with the same average

SER but less benign burst characteristics, in analyzing the second, third, and fourth decoding stages.

The magnitude of this effect has not been assessed, but it might provide an argument for adding a couple
of extra redundant symbols to the strongest codeword only, in order to maintain a balanced codeword

set if the weaker (redecoded) codewords achieve SERs slightly better than predicted.

As noted earlier, if Eb/No drops below the threshold designed to produce a BER of 10 -7, the perfor-
mance of the highest redundancy Reed-Solomon codes falls apart, and the decoding of the interleaved

code block never gets started. The overall BER increases dramatically according to the steep slope of the

high-redundancy code performance curves. Conversely, if Eb/No is increased above the design threshold,

further reduction in overall BER below 10-7 is hampered by the flatter slope of the performance curve for
the four weakest codewords. Figure 8 shows the unusual performance curve that characterizes the four-

stage Galileo LGA decoding system. Also shown for comparison are performance curves for the two-stage

system analyzed ill [1] and the standard one-stage concatenated system with a constant redundancy-a2
Reed-Solomon code and no Viterbi redecoding. For four-stage decoding, the error rate falls off very

steeply as Eb/No is increased toward the design threshold; in this region, performance is dominated by

that of the highest-redundancy code(s). Upon reaching the design threshold, the performance curve flat-
tens out; here the dominant error contribution comes from the weakest codewords. The lesson learned

from considering the entire four-stage performance curve is that you get exactly what you ask for: a very

steep descent reaching the required error rate at a minimum expenditure of Eb/No, but slow improvement
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Fig. 8. Performance curves for one-, two-, and four-stage decoding with
depth-8 interleaving and near-optimum redundancies.

beyond the requirement if further Eb/No is supplied. The same effect is evident but less noticeable for

two-stage decoding. For one-stage decoding, the performance curve takes the traditional convex shape.

The four-stage performance curve plunges most rapidly to the required SER level, reaching that point

0.56 dB more cheaply than one-stage decoding and 0.17 dB more cheaply than two-stage decoding. On

this basis, the Galileo project selected four-stage decoding as the system for maximizing the possible data

return.
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One of the inherent problems in testing the feedback concatenated decoder

(FCD) at our operating symbol signal-to-noise ratio (SSNR) is that the bit-error

rate is so low that we cannot measure it directly through simulations in a reason-

able time period. This article proposes a test procedure that will give a reasonable
estimate of the expected losses even though the number of frames tested is much

smaller than needed for a direct measurement. This test procedure provides an

organized robust methodology for extrapolating small amounts of test data to give
reasonable estimates of FCD loss increments at unmeasurable minuscule error rates.

Using this test procedure, we have run some preliminary tests on the FCD to

quantify the losses due to the fact that the input signal contains multiplicative

non-white non-Gaussian noises resulting from the buffered telemetry demodulator

(BTD). Besides the losses in the BTD, we have observed additional loss increments

of 0.3 to 0.4 dB at the output of the FCD for several test cases with loop signal-to-

noise ratios (SNRs) lower than 20 dB. In contrast, these loss increments were less
than 0.1 dB for a test case with the subcarrier loop SNR at about 28 dB. This test

procedure can be applied to more extensive test data to determine thresholds on

the loop SNRs above which the FCD will not suffer substantial loss increments.

I. Introduction

Thus far, the feedback concatenated decoder (FCD) has only been tested with signals corrupted by

pure additive white Gaussian noise (AWGN). In reality, the FCD takes input from the output of a receiver,

such as the buffered telemetry demodulator (BTD), which contains multiplicative non-Gaussian noise.

The FCD is composed of a Viterbi decoder (VD) and a Reed-Solomon (RS) decoder, as shown in Fig. 1.

The RS decoder decodes four different types of codewords with different error correction capabilities:
E = 47, 30, 15, 5. In each eight-codeword frame, the single codeword with the highest correctability,

E = 47, is decoded first. This decoded word is passed back to the Viterbi decoder, which redecodes its

data utilizing the new information. Then the RS decoder is able to decode the single codeword with

the next highest correctability, E = 30, and it feeds this word back to the Viterbi decoder for another

redecoding. At the next stage, the two codewords with correctability E = 15 are decoded and finally,
after one more Viterbi redecoding, the RS decoder decodes the final four codewords with correctability
E=5.

110


